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ABSTRACT  

This study addressed the practical problems of complex picking environments, difficult image recognition, and 

low picking efficiency in apple harvesting, combined with China's agricultural requirements and picking 

systems. An improved apple fruit recognition method based on attention mechanisms and YOLOv5 was 

proposed. A dataset was created by collecting 3,600 apple images under front-light, side-light, and backlight 

conditions at different coloring stages in natural environments. The SENet and CBAM attention mechanisms 

were used to enhance YOLOv5's feature extraction network, and the model was trained to improve detection 

accuracy. Experimental verification showed that the YOLOv5x model embedded with the CBAM module 

achieved the highest mean average precision (mAP) of 98.3%. The CBAM module outperformed the SENet 

module. Actual tests of the apple-picking robot's vision system prototype showed that when the IOU threshold 

was set at 0.5 and 0.3, the average detection accuracy was over 85% in both cases. The results demonstrated 

that the improved YOLOv5 model exhibited robustness to light intensity variations. This approach provides a 

technical reference for developing apple picking robot vision systems. 

 

 

摘要 

针对苹果采摘存在采摘环境复杂、图像准确识别困难、采摘效率低下等实际问题，结合我国苹果采摘农艺要求

及采摘体系。本文提出了一种基于注意机制和改进的 YOLOv5的苹果果实识别方法。该方法通过收集 3600张

自然环境中顺光、侧光和背光的不同着色天数的苹果图像，创建了一个数据集，注意机制 SENet 和 CBAM 用

于改进 YOLOv5 的特征提取网络，并对模型进行训练以提高模型的检测精度。经过实验验证，嵌入 CBAM 模

块的 YOLOv5x 的平均检测精度最高，mAP 为：98.3%。CBAM 模块的性能优于 SENet 模块。结果表明：改

进的 YOLOv5模型对光强变化具有良好的鲁棒性。通过采摘机器人视觉识别系统样机的实际试验验证，当 IOU

阈值设为 0.5和 0.3时，该系统样机平均检测精度均在 85%以上。改进后的 YOLOv5模型可为苹果采摘机器人

视觉系统的开发提供参考。 

 

INTRODUCTION 

 China is the largest producer and consumer of apples, with a large cultivation area and high yield. 

However, the mechanization level of apple harvesting is relatively low (Lu et al., 2020). Apple-picking robots 

can improve harvesting efficiency and save costs, but the complex working environment and various uncertain 

factors make apple picking challenging. Rapid detection of fruits in complex natural environments is the primary 

task in research on apple-picking robots (Wang et al., 2021). Only when the visual system recognizes the 

target can the robotic arm and end effector be driven to complete fruit picking (Tian et al., 2020; Liu et al., 2019; 

Zhao et al., 2021). The accuracy of fruit recognition directly affects the efficiency and quality of robot harvesting. 

 Traditional target recognition methods for apple-picking robots mainly rely on the color and grayscale 

threshold of the fruits (Felzenszwalb et al., 2010). They require manual extraction of target features and are 

greatly influenced by natural light intensity, as well as branch and leaf occlusion. The robustness of the 

algorithm is poor. Target detection based on machine learning requires predetermined parameters, and the 

parameter size significantly affects the classification results. 

 Currently, deep learning-based detection algorithms are divided into single-stage algorithms and two-

stage algorithms based on the different ways of predicting target categories and positions (Luo et al., 2020). 
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Since 2014, Girshick et al., (2016), have successively proposed a series of two-stage algorithms, such as R-

CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN.  

 The calculation area generation in the two-stage detection algorithm improves the detection accuracy, 

but increases the calculation amount, training difficulty and parameter quantity of the algorithm, reduces the 

prediction speed of the algorithm, and is difficult to meet the real-time detection requirements. To solve the 

problem of algorithm efficiency, Redmon J et al., (2016), have successively proposed single-stage object 

detection algorithms represented by the YOLO series since 2016. Single-stage algorithms regress the position 

and class of bounding boxes in a single output layer, resulting in a significant improvement in detection speed 

compared to two-stage algorithms. Among them, the YOLOv5 algorithm is currently a more advanced object 

detection algorithm, surpassing YOLOv4 in both detection accuracy and speed. Therefore, this model has a 

significant advantage in hardware deployment and is suitable for rapid detection of apples in natural 

environments. 

 In this study, an improved YOLOv5 object detection method based on attention mechanisms is 

proposed to optimize the apple fruit detection process. The goal is to overcome errors and influences caused 

by environmental factors and enhance the detection performance of the visual system for fruits. 

 

MATERIALS AND METHODS 

Data acquisition and pre-processing 

 This study focuses on the Red Fuji apple in Yantai. The data collection was conducted at the Le Feng 

apple plantation in Linqu, Weifang. Figure 1 shows images of apples at different stages of maturity. Collecting 

images of apples at different coloring stages facilitates testing the impact of different maturity stages on the 

detection performance of the network model. 
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Fig. 1 – Apple images collected at different coloring periods 

1. Coloring for 5 days; 2. Coloring for 10 days; 3. Coloring for 15 days 
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Fig. 2 – Images of an apple under different lighting angles 

1. Front-lighting; 2. Side-lighting; 3. Backlighting 

 

 To ensure the diversity of collected image samples, apple images were captured under different 

weather conditions (sunny and cloudy) at the time range of 8:00-17:00. The captured images were taken in 

three lighting modes: front-light, side-light, and backlight. Figure 2 shows apple images captured under 

different lighting angles. 

 

Data pre-processing 

 The labelImg software was used to annotate the apple fruits in the collected 3600 images. Figure 3 

shows the distribution of sample attributes in the dataset. 
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Fig. 3 – Distribution of sample attributes in the dataset 

 

 To ensure the randomness and rationality of dataset partition, manual partitioning was conducted on 

the collected apple images in this study. A total of 300 images were randomly selected from the original dataset 

to create Test Set 1, which consists of 100 images taken in front-lighting conditions, side-lighting conditions, 

and backlighting conditions, respectively. Additionally, Test Set 2 was created by randomly selecting 100 

images of apples that were 5 days, 10 days, and 15 days old, respectively, while the remaining images were 

used as training data for the model. The number of samples in each dataset and the corresponding number of 

target boxes are shown in Table 1. 

Table 1 

 Factors and level of orthogonal test 

Datasheet 

Training sets  Test set 1  Test set 2 

Number of 

pictures 

Number of 

target boxes 

Number of 

pictures 

Number of 

target boxes 

Number of 

pictures 

Number of 

target boxes 

Coloring 

for 5 days 
1000 12038 100 1314 100 1328 

Coloring 

for 10 days 
1000 13117 100 1248 100 1196 

Coloring 

for 15 days 
1000 12864 100 1293 100 1159 

Grand total 3000 38019 300 3855 300 3683 

 

 The 3600 original apple images collected in this study are not sufficient to cover all the factors such 

as lighting intensity, weather, noise, and clarity in natural environments. Therefore, data augmentation is 

performed on the original images to enhance the generalization ability of the object detection model and 

prevent overfitting. This study mainly adds random brightness, random contrast, random Gaussian noise, 

random saturation, and random flipping to the collected apple images to simulate various states of fruit trees 

in natural environments as much as possible. The augmented apple images are five times more than the 

original data. Figure 4 shows some examples of the apple images after augmentation. 
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Fig. 4 – Examples of image augmentation 

1.Original Image; 2. Random Brightness; 3. Random Contrast; 4. Random Gaussian noise; 5. Random saturation; 6. Random rotation 

 

Construct an apple recognition model based on improved YOLOv5 

 The YOLOv5 algorithm added modules such as image compression and Mosaic data augmentation at 

its input end (Yonghui et al., 2022). Mosaic utilized random scaling, cropping, and arrangement of four images 

to generate a new image, achieving data augmentation (Chen et al., 2022). 

 There were four different versions of the YOLOv5 algorithm: YOLOv5x, YOLOv5l, YOLOv5m, and 

YOLOv5s. The structural principles of the YOLOv5 versions were similar, with differences only in network width 

and depth (Liu et al., 2020, Yongpeng et al., 2024). The network structure of the YOLOv5 algorithm mainly 

consisted of modules such as Focus, CBL, CSP_1, CSP_2, and SPP, as shown in Figure 5. 

 

 
Fig. 5 – The network structure of YOLOv5 

 

 The CBL module consists of Convolutional layers, Batch Normalization (BN) layers, and Leaky ReLU 

(LR) layers. The CBL module plays a role in downsampling and helps reduce information loss in the 

downsampling process. The computational cost of the Focus module in YOLOv5 is approximately three times 

higher than that of downsampling with convolution, but it helps reduce information loss in the downsampling 

process. 

 The feature extraction network in the YOLOv5 algorithm consists of various functional modules such as 

Focus, CBL, CSP, and SPP. The deep network layers ensure the network's ability to extract features. The 

YOLOv5 algorithm utilizes convolutional operations to perform feature re-extraction on the output feature 

maps. The algorithm takes in input image data of size 640x640x3 and outputs three feature maps of sizes 

80x80x18, 40x40x18, and 20x20x18, respectively. The feature map with a higher resolution is used for 

predicting smaller objects, while the ones with lower resolutions are used for predicting larger objects. Using 

feature maps of different resolutions helps improve the accuracy of object recognition for objects of different 

sizes. 

 

Attention mechanism 

 The introduction of attention mechanisms in computer vision can effectively enhance the feature 

extraction capability of networks, thereby improving the accuracy of object recognition. Currently, widely used 

attention mechanisms in deep learning include SENet and CBAM. 
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SENet attention mechanism 

 
Fig. 6 – Schematic diagram of the seNet attention mechanism structure 

 
 Figure 6 shows the structure of the SENet network. The SENet takes an H×W×C feature map as input, 

with C channels (Bai et al., 2022; Lin et al., 2021; Peng et al., 2022). First, the input feature map is globally 

average pooled, reducing the height and width of the feature map to 1×1, as shown in Eq.(1). Then, two fully 

connected layers are applied, followed by the sigmoid activation function to normalize the values. This process 

obtains the weights for each channel in the input feature map. By multiplying these weights with the input 

feature map, a new calibration of the input feature map using channel attention is achieved, as shown in Eq.(2). 
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 zc：the c-th element of z; 

 H：the height of the feature map; 

 W：the width of the feature map; 

 𝑢𝑐(𝑖, 𝑗)：the (i, j)-th element of the c-th channel of u； 

 𝜎(𝑧̂)：channel weight. 
 

 After passing through the first fully connected layer, the dimension of the feature map decreases, 

significantly reducing the model's parameters and computational complexity. After passing through the second 

fully connected layer, the dimension of the feature map is restored to the same as the input, establishing 

correlations between channels. This increases the weights of effective feature map channels and decreases 

the weights of other feature map channels, allowing the model to achieve better training performance. 
 

CBAM attention mechanism 

 
Fig. 7 – Schematic diagram of the structure of the CBAM attention mechanism 
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 The structure shown in Figure 7 is the Convolutional Block Attention Module (CBAM), which consists of 

a Channel Attention Module and a Spatial Attention Module (Liu et al., 2021; Xia et al., 2023; Huang et al., 

2021). The input feature map first goes through the Channel Attention Module, where the feature map's height 

and width are globally averaged and globally max-pooled. The resulting values are then passed through a 

Multi-Layer Perceptron (MLP) to obtain the channel attention weights. These weights are then added to the 

original input feature map through a multiplication and addition operation. This completes the calibration of the 

original input feature map using channel attention, as shown in Equation·(3). 

)))(F(WW))(F(Wσ(W

l(F)))MLP(MaxPoool(F))(MLP(AvgPo(F)M

cc

avg

c

max0101 +=

+=
 

(3) 

 

 𝜎：Sigmoid function; 

 C：Number of channels; 

 W1, W0：Input shared weights; 

 𝐹𝑎𝑣𝑔
𝑐 ：Feature mapping generated by average pooling in space; 

 𝐹𝑚𝑎𝑥
𝑐 ：Feature mapping generated by maximum pooling in space. 

 

 After passing through the CBAM module, the feature map generates new feature maps with channel 

and spatial attention weights, enhancing the relationship between image features in both spatial and channel 

dimensions. This is beneficial for extracting typical features of the target (Su et al., 2021, Lingqing et al., 2024). 

 

Loss function 

 In the target detection task, the loss function can better reflect the gap between the predicted value and 

the real value of the data, and then reflect the detection effect. The loss function used in this paper consists of 

three parts, they are Loss of confidence ( conL ),Positioning loss ( GIOUL ) and Classification loss ( classL ). The 

total loss function ( totalL ) can be obtained by accumulating the three, as shown in Equation (4). 

classGIOUcontotal LLLL ++=  (4) 

 In the formula, the confidence loss measures the confidence level of the prediction box, with the 

calculation shown in Equation (5). The calculation method of the function is cross entropy error, which  

determines whether the predicted bounding boxes contain the predicted target. If there is a predicted target in 

the current bounding box, the value of 
obj

ijI  is 1. If there is no predicted target in the current bounding box, the 

value of 
obj

ijI  is 0. The confidence values are weighted and summed to obtain the value of conL . 
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(5) 

 λobj: there is a target weight coefficient in the grid; 

 λno: no target weight coefficient in the grid; 

 𝑆2: number of grids; 

 𝐼𝑖𝑗
𝑜𝑏𝑗

: to determine whether the j-th bounding box in the i-th grid needs to be predicted, 

 𝐼𝑖𝑗
𝑛𝑜

: to determine whether the j-th bounding box in the i th grid has a target that does not need to be 

predicted, 

 𝐶𝑖: predict the target confidence value; 

 iC


: the actual target confidence value. 

 𝐿𝑐𝑙𝑎𝑠𝑠 is the classification loss, which is used to calculate the difference between the predicted value 

and the actual value of the category. The calculation is shown in Equation (6).  
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The calculation of 𝐿𝑐𝑙𝑎𝑠𝑠  is similar to that of 𝐿𝑐𝑜𝑛.The values of  𝐼𝑖𝑗
𝑜𝑏𝑗

 and 𝐼𝑖𝑗
𝑜𝑏𝑗

 are the same as shown in 

Equation (7). The calculated probability value is weighted and summed to obtain the value of 𝐿𝑐𝑙𝑎𝑠𝑠 . 

Lclass =  
= = 

2

0 0

S
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B

j classc
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ijI [− )(cp i



− ln ( )(cp i
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) − (1 − )(cp i



) ln(1 − 𝑝𝑖(𝑐)] 
(6) 

 

 

 c：Boundary box prediction category; 

 )(cpi ：The probability that the target is predicted to be c in the i-th grid; 

 )(cp i



：The actual probability that the target is c in the i-th grid. 

 

 In object detection tasks, IoU  is often used to calculate the coordinate differences between predicted 

bounding boxes and ground-truth bounding boxes, and can more directly reflect the detection performance of 

the algorithm. The calculation formula is shown in (7) ~ (9). 
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 A：Real box area; 

 B：Predicting box area; 

 C：A and B minimum circumscribed rectangle area. 

 
RESULTS 

The effect of adding attention mechanism on the test results 

 To verify the detection performance of the YOLOv5 algorithm after adding the attention mechanism 

module, a comparative experiment was conducted between the YOLOv5 algorithm with the added attention 

mechanism module and the original YOLOv5 algorithm. The performance was tested using a dataset 

composed of samples mixed from different maturity stages. Table 2 shows the experimental results of apple 

detection before and after adding the attention mechanism module to the YOLOv5 algorithm. 

Table 2 

Test results of Apple detection before and after the improvement of the YOLOv5 algorithm 

Algorithm Number of network parameters（MB） Examination speed（ms） mAP（%） 

YOLOv5s 13.7（0.00） 31.5（0.00） 92.3（0.00） 

YOLOv5s-SENet 14.8（+8.03%） 31.9（+1.26%） 93.5（+1.30%） 

YOLOv5s-CBAM 15.1（+10.22%） 32.1（+1.9%） 94.2（+2.06%） 

YOLOv5m 40.2（0.00） 80.2（0.00） 93.1（0.00） 

YOLOv5m-SENet 42.8（+6.47%） 81.4（+1.50%） 94.4（+1.40） 

YOLOv5m-CBAM 43.6（+8.46%） 82.3（+2.62%） 95.6（+2.69%） 

YOLOv5l 88.5（0.00） 148.3（0.00） 95.6（0.00） 

YOLOv5l-SENet 92.8（+4.86%） 149.8（+1.01%） 96.9（+1.36%） 

YOLOv5l-CBAM 94.2（+6.44%） 151.8（+2.36%） 97.8（+2.30%） 

YOLOv5x 171.6（0.00） 304.2（0.00） 96.4（0.00） 

YOLOv5x-SENet 179.1（+4.37%） 308.4（+1.38%） 97.7（1.35%） 

YOLOv5x-CBAM 181.2（+5.59） 311.7（+2.47%） 98.3（+1.97%） 
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 According to Table 2, it could be seen that in the original YOLOv5 algorithm, YOLOv5x had an average 

detection accuracy of 96.4%, higher than the other three networks, but it had a longer detection time.

 After separately embedding the SENet attention mechanism module, the average detection accuracy of 

YOLOv5s increased by 1.3% to 93.5%. YOLOv5m, YOLOv5l, and YOLOv5x also showed some improvements 

in average detection accuracy. The parameter count of YOLOv5s-SENet increased by 8.03% compared to the 

original version, resulting in a 1.26% increase in detection time. Compared to the original version, the 

parameter count of YOLOv5m-SENet, YOLOv5l-SENet, and YOLOv5x-SENet increased by 4.37% to 6.47%, 

with the highest increase being only 7.5MB. However, all versions achieved more than 1% improvement in 

accuracy, demonstrating good detection performance. 

 When the CBAM module was embedded in all four different network structures of the YOLOv5 algorithm, 

the parameter count of YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x increased by 10.22%, 8.46%, 6.44%, 

and 5.59% respectively. The lighter the network, the greater the increase in parameter count. The actual 

detection results of YOLOv5 model before and after adding the attention mechanism modules were shown in 

Figure 7. 

 

 
1 

 
2 

 
3 

Fig. 8 – YOLOv5 test effect before and after improvement 

1.Unimproved YOLOv5, 2. YOLOv5+SENet, 3. YOLOv5+CBAM. 

 

 From Figure 8, it could be seen that compared with Figure (a), the occluded fruits in Figure (b) and 

Figure (c) were successfully recognized, indicating that the YOLOv5 network model with the added attention 

mechanism module had improved accuracy in identifying small and occluded targets. Figure (c) showed that 

the improved YOLOv5-CBAM model successfully detected the small target fruit on the left, while the other two 

algorithms failed to detect this target. Taking into account various factors, embedding the attention mechanism 

module helped improve the model's accuracy in recognizing difficult samples, and the performance of the 

SENet module was slightly lower than that of the CBAM module. 

 

Impact of different lighting intensity on experimental results 

 In natural environments, different lighting intensities have some influence on the brightness of captured 

images. Images captured in direct light are clearer, images captured in side-light have some variations in 

lighting and shadows, while images captured in backlight are darker, all of which can affect the accuracy of 

fruit detection. To further validate the detection performance of the proposed attention mechanism-based 

improved YOLOv5 algorithm, this section conducted relevant experiments using YOLOv5s, YOLOv5s-SENet, 

and YOLOv5s-CBAM as examples.  

 The test sets were then evaluated using different weight files before and after the addition of the 

attention mechanism, and the experimental results were shown in Table 3. 

Table 3 

Average detection accuracy at different light intensity datasets 

Data set YOLOv5s YOLOv5s-SENet YOLOv5s-CBAM 

Front-lighting 94.3% 95.1% 95.6% 

Side-lighting 92.6% 93.7% 94.3% 

Backlighting 91.4% 92.5% 92.8% 

 

 According to Table 3, the average accuracy of the original YOLOv5s algorithm on the front-light dataset 

was 94.3%. The YOLOv5s - SENet and YOLOv5s - CBAM algorithms achieved average accuracies of 95.1% 

and 95.6%, respectively.  
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 This indicated that embedding attention mechanism modules in the YOLOv5 algorithm improved the 

average detection accuracy across different lighting intensities, with the YOLOv5s - CBAM algorithm achieving 

the best detection performance. The YOLOv5s - CBAM algorithm achieved the highest average accuracy of 

95.6% on the front-light dataset, which was 1.38% higher than that of YOLOv5s. Both the original and improved 

YOLOv5 algorithms achieved average accuracies above 94% on the front-light dataset. On the backlight 

dataset, YOLOv5s - CBAM achieved an average detection accuracy of 92.8%, while YOLOv5s achieved only 

91.4%, a difference of 1.4%. Furthermore, the average accuracy of YOLOv5s - CBAM on the backlight dataset 

was 2.93% lower than that on the front-light dataset. This also explained why the average detection accuracy 

of both the original and improved YOLOv5 algorithms was lowest on the backlight dataset. On the side-lighting 

dataset, the average accuracy of YOLOv5s, YOLOv5s - SENet, and YOLOv5s - CBAM was 92.6%, 93.7%, 

and 94.3%, respectively, all of which fell between the average detection accuracy of the front-lighting and 

backlighting datasets. 

 The average accuracy of YOLOv5s on datasets with different lighting intensities differed by only 2.9%, 

indicating that both the original and improved YOLOv5 algorithms had good robustness to changes in lighting 

intensity. The detection results were shown in Figure 9. 
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Fig. 9 – Detection effect at different light angles 

1. Front-light; 2. Side-light; 3. Backlight 

 

Prototype testing of a robotic target recognition system based on the proposed algorithm 

 As shown in Figure 9, the prototype of the vision recognition system for the picking robot was designed 

in this paper. The system was composed of a JETSON NANO embedded development board, a 5V4A power 

supply, a USB camera, and an HDMI touch display. Figure 9 presents the scene when the system prototype 

was functioning properly, with the recognition object being a simulated apple tree in a real - world scenario. As 

can be seen in Figure 9, the system could normally detect the fruit targets in the field of view, and the detection 

speed was stable at 30 frames per second. 

 

 
Fig. 10 – Prototype of target recognition system for harvesting robot 

 

 Experimental verification showed that when the IOU threshold was set at 0.5 and 0.3, the average 

detection accuracy of the system prototype was over 85% in both cases, with a detection speed of 30 frames 

per second. 



Vol. 75, No. 1 / 2025  INMATEH - Agricultural Engineering 

 

 971  

 
Fig. 11 – Actual testing results of Apple 

 

CONCLUSIONS 

 This article proposed an apple detection method using attention mechanisms and improved YOLOv5 to 

facilitate picking robots' detection. Firstly, SENet and CBAM mechanisms enhanced YOLOv5's feature 

extraction network, improving model accuracy. 

 Experimental results showed that after embedding the attention mechanism module, the mAP of the 

YOLOv5m-CBAM model was 95.6%, which was improved by 2.69%, with an increase in detection time of 

2.62%. Among the YOLOv5x models with embedded CBAM module, the average detection accuracy was the 

highest, with an mAP of 98.3%, and the performance of the CBAM module was superior to that of the SENet 

module. The improved YOLOv5s model achieved apple recognition accuracy ranging from 91.4% to 95.6% 

under different lighting conditions, with a difference in fruit recognition accuracy within 3% for the same model. 

These results demonstrated that the improved YOLOv5 model had good robustness to changes in light 

intensity. The improved YOLOv5 model could provide reference for the development of the visual system of 

apple picking robots. Actual tests of the apple-picking robot's vision system prototype showed that when the 

IOU threshold was set at 0.5 and 0.3, the average detection accuracy was over 85% in both cases. 
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